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Summary (total: /300 characters): 

 

KomaMRI.jl was extended to include (1) mix-and-match simple motions and (2) complex arbitrary motions, while 

maintaining high performance and GUI interactivity. These motion models are incorporated into the Phantom type, 

and an HDF5-based file format is provided to store and share Phantom objects. 

 

Abstract (total: /5000 characters): 

 

Introduction: 

The integration of realistic motion into digital simulators to solve the Bloch equations has been previously proposed. 

For this, two approaches have been taken: optimizing performance,1 or the inclusion of complex −including flow− 

motion.2-4 Nevertheless, extensible GPU-accelerated simulators, like KomaMRI.jl,5 could reconcile these two 

seemingly contradictory goals, as Koma is written in Julia, which facilitates fast and composable code. Currently, its 

phantom implementation defines motion by means of analytic functions, so simulation of realistic complex motion is 

limited, and the definition of even simple movements requires an analytic model. We propose an extension of the 

phantom structure to ease the definition of simple motion and to give room to complex arbitrary motion. 

 

Methods: 

The phantom structure currently existing in the simulator has been extended by adding a new MotionModel abstract 

type. Each motion model requires a method definition of the get_spin_coords function, which returns the positions of 

each spin at a set of arbitrary time instants −i.e. the time steps of the simulation−. Two models have been defined, 

namely: 

1.- SimpleMotion allows the user to easily create simple movements by means of a few parameters. Internally, these 

parameters are used by get_spin_coords to define motion functions that apply to all the spins of the phantom (see Figure 

1). So far, we have implemented translation, 3D-rotation, and heartbeat motion types, which can be both combined, as 

well as periodically extended. Translation is characterized by the linear displacements in the three axes, 3D-rotation by 

the rotation angles with respect to x (pitch), y (roll) and z (yaw), and heartbeat by the three known types of strain in 

cardiac motion, namely, circumferential, radial, and longitudinal.  

Non-periodic types require the start and end of the movement, while periodic types require the period and a time 

asymmetry factor. 

2.- ArbitraryMotion allows individual motion definitions for every spin, stored in matrices dx, dy and dz. Each row 

corresponds to a spin and each column to a discrete time instant. For periodic motion, the parameter period_durations 

stores the cycle duration. Pseudo-periodic motion −such as arrhythmias− is accounted for by letting this parameter be 

a vector with different durations. To include flow dynamics, we have defined an additional flag matrix −referred to as 

resetmag− which indicates the time instant at which a reset in the magnetization of a spin should be carried out. This is 

necessary for simulating inflow and outflow of spins. Figure 2A illustrates the ArbitraryMotion structure arrays.  

In this case, the function get_spin_coords performs a piecewise linear interpolation, considering the dx, dy and dz 

values as nodes, as shown in figure 2B. 

 

Phantom’s including these motions can be stored and shared by using our proposed HDF5-based file format (.phantom). 

 

Results: 

Figure 3 shows a cine acquisition with tagging pre-pulses on a phantom with a combination of periodic heartbeat and 

rotation SimpleMotion types. For ArbitraryMotion, figure 4A illustrates six phases of three cine acquisitions. First and 

second rows correspond to a longitudinal and an axial slice of a cylindrical phantom respectively, in which blood 

particles are injected into the left-hand side of the cylinder and move rightwards. The bright-blood effect encountered 

in 2D GRE sequences can be observed in Figure 4B. This effect occurs due to fresh blood particles entering the imaging 

area where the steady state has been reached by the spins of the wall tissue. Finally, the third row shows a cine image 

executed on an XCAT6 model where trajectories are expressed by a sequence of positions. 

Discussion: 
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Although KomaMRI originally included a built-in method for defining motion using analytic functions, our approach 

makes it easier for the user to create simple motions by requiring only the definition of a few parameters. More involved 

motions require another model, such as the one we proposed (ArbitraryMotion). The advantage of our model with 

respect to other simulators1-4 is that we have no difference in processing according to the type of motion we intend to 

simulate, since organ motion and flow −and, eventually diffusion− are handled similarly with minor changes in the 

simulation functions, due to Julia’s multiple dispatch. This contribution has also led to the definition of a new .phantom 

file format, which follows the HDF5 standard and allows to store, share and visualize Phantom’s easily. In terms of 

performance, SimpleMotion is as performant as the previous motion implementation in Koma. For ArbitraryMotion, 

there is a trade-off between pre-calculating positions, with higher memory consumption, and on-the-fly calculations, 

which increase simulation time. 

 

Conclusion: 

KomaMRI has been extended to accommodate simple and arbitrary motion models and a new file format has been 

defined for reproducibility. Research is now focused on ArbitraryMotion performance optimization. 
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Figure 1. Implementation scheme of get_spin_coords function for SimpleMotion model. The way in which the variable 

t is transformed depends on the type of movement −periodic or non-periodic−. The transformation is carried out by the 

function t_unit. Spin positions are calculated using t_unit and the parameters of the simple motion type.  
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Figure 2. A) ArbitraryMotion model structure arrays. B) Implementation scheme of get_spin_coords for 

ArbitraryMotion model. For simplicity, only dx for the i-th spin is shown. Spin positions are calculated by means of a 

piecewise linear interpolation. The variable seqd.t represents the discretized sequence time points in which the motion 

is interpolated. This motion is assumed to be periodic, and therefore it starts and ends with zero displacement (those 

samples are not included in dx). 
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Figure 3. 2D cine tagging acquisition over a myocardium model phantom, composed by 128778 spins and presenting 

heartbeat and rotation movements at 60 bpm. 128 x 128 matrix, FOV = 12 cm. The sequence used is a bSSFP with TR 

= 30 ms and flip angle = 15º. Tagging is implemented by means of a simple SPAMM (1-1) sequence. Figure inspired 

in 1. The tag lines fade due to T1 recovery. 
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Figure 4. A) 2D CINE acquisitions over a cylindrical flow phantom and a XCAT heart phantom. Displacement fields 

obtained from XCAT were not fully realistic, resulting in some artifacts due to blood not being incompressible (giving 

unrealistically high proton densities). B) Graphical representation of the bright-blood effect over time for two pixels. 


