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Abstract
Simulation plays an important role in MRI research and train-
ing. Several simulators exist. Nevertheless, they do not have an
easy interface to design the MRI sequence to be simulated. In
this work, we developed an application that provides a graphi-
cal interface for that purpose. We have developed software with
a graphical interface in which the user is allowed to build any
arbitrary MRI sequence by arranging basic blocks such as gra-
dients and RF pulses as well as to carry out a physics-informed
simulation. This editor, implemented in Qt, makes use of Ko-
maMRI.jl, an existing GPU-accelerated MRI simulator. We chose
this simulator because it is the fastest. The main feature of our
application is that it supports web-based technologies so that it
can run either as a desktop application or in a browser. It also
includes other functionalities, such as saving/loading sequences
or the possibility of visualizing the excited slice in three dimen-
sions. The results of its development have been satisfactory and
promising for future work.

1 Introduction
Magnetic resonance imaging (MRI) is a non-invasive medical
technique used for the diagnosis of pathologies related to soft tis-
sues [1]. It is a versatile tool, so it has become the most appropri-
ate choice in many clinical situations. However, it is not an easy
task to operate with a MRI system and many factors contribute to
these difficulties [2]. These obstacles, coupled with the high cost
of real MRI systems as well as their high clinical demand, make
the task of learning this technology an issue.

This motivation gave rise to MRI simulators, which are a breadth
of tools that ease the understanding of all the elements involved
in the process, and they also allow practitioners to carry out
an unlimited number of uses. Since this idea emerged, several
simulators have been described. One of these simulators is Ko-
maMRI,jl [3]; this tool, developed in the Julia programming lan-
guage [4], is meant to simulate general MRI scenarios that could
arise in pulse sequence development. It has a GUI that allows for
the visualization of the outcomes that arise from the simulation of
a predefined sequence (reconstructed image, K-space, raw signal,
pulses, etc.) . However, the tool lacks an actual sequence editor
as well as a graphical tool to observe the selected slice. This,
coupled with the fact that, to the best of our knowledge, no MRI
sequence editors are available on web-based technologies, is the
main motivation for this paper.

What we propose here is an MRI sequence editor with the fol-
lowing features:

• Simple to use, versatile and both education- and research-
oriented purposes.

• Cross-platform. Hosted on a server, the application can be
accessed from any web browser.

This article aims to describe the sequence editor creation process
from an engineering software perspective. Albeit in the paper we
focus on the desktop-application, the technologies used enable
us, with almost no code modification, to embed it in a client-
server application; detailed steps on how to accomplish the latter
are also provided.

2 Background
Nowadays, there is a wide variety of tools available for MRI sim-
ulation. Some of them (like the ones described in [5] and [6])
were created with the aim of teaching theoretical MR concepts
such as spin dephasing (Bloch equation) or quantum mechanics,
but had no direct medical purposes [2]. Other simulators, for ex-
ample, Virtual MRI [7], can emulate some of the main elements
of the acquisition process in an actual MRI scanner. Torheim [8]
simulator has a very similar behaviour to the one we have just
mentioned, and shares the didactic purposes [2].

As for the research-oriented simulators, we should talk about
JEMRIS [9], an open-source simulator focused, like the one here
presented, on sequence development. It considers many proper-
ties of interest in MRI, to be as realistic as possible; however, it
presents the drawback of only using CPU multi-threading. Other
alternatives could be BlochSolver [10], MRISIMUL [11] (both
closed-source) or MRILab [12], one of the most recent MRI sim-
ulators.

KomaMRI,jl [3] is a simulator intended to be fast, easy-to-use,
extensible, open-source, and cross-platform. This simulator
has been developed in Julia, a nice language for fast prototyp-
ing which includes precompiling and GPU support; the former
should make KomaMRI.jl as efficient as other simulators written
in C/C++ languages and the latter makes fast execution possible.

3 Analysis of requirements
The main functional requirements are:

• A set of basic building blocks for a MRI sequence (es-
sentially, RF pulses and gradients) should be available and
ready to use out of the box.

• The application should allow for the creation of arbitrary
MRI sequences by arranging these basic blocks through
simple drag & drop operations. Every block should be in-
dividually configurable and sequences should be passed to
the simulator.

• There must be the option to generate groups of blocks.
These groups, from the user’s perspective, will be seen as
blocks in themselves, so all the operations that can be per-
formed on simple blocks (create, move, delete) must also
be available on groups.

• The functionality of saving and loading sequences must be
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included.
• The user must be able to define some global parameters

for the simulation (intensity of the main magnetic field
B0, sampling period ∆t, maximum gradient Gmax, etc.).
Other acquisition parameters, such as TE (echo time), TR
(repetition time) or ETL (echo train length) are implicitly
defined by means of the sequence.

• The user interface should provide a view of the recon-
structed image and its corresponding K-space, as well as
a temporal diagram of the created sequence.

• A 3D-visualization of the excited slice should also be dis-
played.

• The simulation core may reside either on the local machine
or on a remote one.

Regarding non-functional requirements, these include the devel-
opment of a desktop application and its subsequent extension to a
client-server web version, which shares the same code base, and
thus is identical to the desktop version for the end user.

4 Design and implementation
4.1 Selected technologies

Once the requirements have been established, it is necessary to
select the technologies to be used. As for the graphical user in-
terface (this is where the user must define all the simulation pa-
rameters, including the sequence), Qt [13] is chosen. This C++
framework is oriented to cross-platform (desktop, web or even
mobile) application development, so it seems the right option;
specifically, Qt Quick, a module for interface development based
on the QML language, has been used. The usefulness of QML
mainly lies on the definition of the elements that make up the
interface.

In addition, Qt permits compilation to WebAssembly [14], a type
of low-level code that can be executed in modern browsers.

4.2 Implementation

4.2.1 Interface overview

Here we present the design, both visual and functional, of the
interface itself. Based on all requirements previously seen, the
final application appearance is shown in figure 1 in which, by
means of panels, all the functionalities are included. The interface
has been designed to be simple and intuitive.

A

EDC

F

G
B

Figure 1. Graphical User Interface sketch. Each panel is la-
belled with a letter used in the main text.

The sequence panel (A) stands out by occupying the entire width
of the application window; this is intended as a way to attract the
user attention to the sequence, which is the main constituent of
the whole process. In addition, it eases its complete visualization,
without the need of trimming or drastically reducing the number
of visible blocks; these blocks can be freely moved, modified
and deleted. Panel (B) provides the library of available blocks,

which can be added to the sequence by simply clicking one of
the panel buttons. Panels (C) and (D) contain, respectively, the
configurable block and the global parameters. As for the for-
mer, clicking on a given block will display its configuration menu
from which related parameters can be easily set; as for the latter,
global parameters are directly tunable. Panel (E) is intended for
sequence management; simple operations such as sequence load-
ing and saving are available. In addition, the user is allowed to
create a block group; groups are intended for providing repetition
capabilities without the need of explicitly writing the repeated
blocks. The button to launch the simulation is also allocated here
for convenience. Finally, the lowermost panels, namely, panels
(F ) and (G), are intended for visualization; specifically, panel
(F ) will display the sequence pulse diagram while panel (G) will
show the simulation result, both in image and k spaces.

4.2.2 An overview of KomaMRI.jl

As stated above, KomaMRI.jl will be used for the simulation it-
self. This simulator presents three input arguments, which will
be instances of the following structures:

• Scanner: this data structure contains the global param-
eters for the simulation, such as the main magnetic field
strength B0, the raster time ∆t or the maximum slew-rate,
among others.

• Phantom: it simulates what in a real scanner would be the
patient’s body (or part of the body), so it contains the data
on which the sequence is applied. This data include the
spatial location of the spins, T1, T2, T ∗

2 times and proton
density ρ information, among others.

• Sequence: it contains the MRI sequence information it-
self. In the simulator, a Sequence object consists of:

- A 2D array of Grad elements. One dimension (rows) is
space (so that we can apply gradients in x, y and z) and the
other (columns) is time. Grad structure mainly consists of
two real scalars: A, corresponding to the gradient amplitude,
and T, which refers to its time duration.

- A 2D array of RF elements. As before, columns dimension
refers to time; as for the other dimension, each row repre-
sents a different coil, so various RF pulses may be simul-
taneously applied. The RF structure is composed of these
attributes: A is the amplitude of the RF pulse complex enve-
lope, T corresponds to the pulse duration and ∆f , included
in latest versions, accounts for the difference in frequency
with respect to the Larmor frequency of the RF pulse.

- A 1D array of ADC elements, the dimension of which is
time. ADC structure stands for data acquisition and contains
information about when the readout is accomplished. It
contains two values: T, which is the duration, and N, which
accounts for the number of (evenly-spaced) samples to be
acquired during time T.

4.2.3 Interfacing with KomaMRI.jl

We need functions from KomaMRI.jl to be called from the GUI
and their input arguments to be in the correct format. To carry
out this task, file QtSlots.jl has been added to the source
directory of KomaMRI.jl. This file contains the sim function,
which acts as an “intermediary" between the GUI and the simu-
lator; it is responsible for adapting the data related to the sequence
and the global parameters to a suitable format. Our solution has
been to provide a Sequence element (as described in the pre-
vious section) for the former and a Scanner object —which is,
in essence, a vector— for the latter. The third input argument
is a Phantom object, also described above. This phantom is
obtained, not from the GUI, but from a (.nii) file. Figure 2
provides a simple outline of all this.
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Simul.

GUI

Raw Data

QtSlots.jl

KomaMRI.jl

simulate(seq,sys,phantom...)

sim(mat,vec)

plot3D(gx,gy,gz,Δf)

Image

Figure 2. Desktop-based application operating diagram

In Qt/QML, sequence data is stored in a ListModel struc-
ture, which is nothing more than a container of definitions of the
ListElement structure. Each ListElement instance con-
tains information about a sequence block.

Once the Simulate button is pressed, the sequence informa-
tion will be passed from QML to C++ by means of a Qt slot
(see Signals and Slots in [13]). The next step is to call the Julia
function, passing the sequence matrix and the global parameters
vector (now, available in C++) as input arguments. The way to
do this is by using a C/C++ API that allows embedding Julia (ex-
pressions, functions, variables...) in C++. Specifically, the fol-
lowing line of code is in charge of calling the –previously defined
in C++– Julia function:
jl_array_t ∗ output = (jl_array_t∗)jl_call2(jl_sim, seq_arg, sys_arg)

Finally, a function called plot3D is defined in file
QtSlots.jl. Its task is to show a 3D representation of
the excited slice while displaying the entire 3D model by
means of a volume rendering technique (see Figure 5). This
functionality provides us with precise information of the slice
selected for a choice of selection gradients and it is reactive in
real time to the choice of these gradients from the GUI. The
visualizer is implemented by using PlotlyJS, a Julia package
oriented to the construction of graphs and diagrams, albeit with
limited support for 3D rendering.

4.2.4 Technical steps for a client-server application

As previously stated, despite the code is reusable from a browser-
based perspective, the application is intended to be deployed in
an application server so a client-server architecture is mandatory.
Hence, additional elements are needed. Figure 3 provides a de-
tailed diagram of what these elements are. Specifically:

Simul.

RESTful

Server

Web

Server

Raw Data

Image

Image

resultID

QtSlots.jl

KomaMRI.jl

Server DeviceClient DeviceBrowser

simulate(phantom,seq,sys,...)

gui.wasm

sim(mat,vec)
POST /sim(mat,vec)

HTTP GET {gui.wasm}

GET {resultID}

Figure 3. Web-based application operating diagram. In this
case, orange arrows represent commands of the protocol estab-
lished between the client and the server (HTTP), while the green
arrows correspond to Julia function calls.

• A web server, capable of providing the client with the re-
sulting files from the compilation to WebAssembly, which
are, mainly, a (.wasm), a (.html) and a (.js) file. These

three files will be loaded on the client’s browser, so the user
will be able to see the GUI and interact with it.

• A REST-based (RESTful) server: this server will run
remotely-requested commands and will return their results.
A RESTful web service works similarly to a web page, so
we only need to send requests and receive their correspond-
ing responses. It is created using Flask, a Python framework
for creating web applications in a simple way. The RESTful
server supports the following functions:

- POST/commands: POST executes a new command and
and saves its output in a temporary file whose identifier
is by default returned in the Location header of the re-
sponse. A JSON document with the fields command and
arguments must be included in the request body.

- GET/commands/{resultID}: GET returns the content
of the file with local identifier resultID (the one obtained
in the Location header of the POST response).

- DELETE/commands/{resultID}: deletes the tempo-
rary file created as a result of the POST command.

5 Results and discussion
In this section we will show the results obtained from the exe-
cution of the program. We will also see the functional graphical
interface, the 3D visualization tool and the current status of the
web version.

5.1 Desktop version

As previously mentioned, Figure 1 showed the final appearance
of the editor. In this particular case, an 81x81 pixel image was
acquired by means of a GE-EPI sequence. The RF pulse was im-
plemented by adding an Ex block; a delay block is then added to
control TE. Then a Dephase block is added to shift the readout
position to the lower-left corner of kspace. Then the EPI_ADQ
block turns out to be a group, the contents of which (when ex-
panded) are shown as smaller rectangles than regular blocks. The
group consists of a two pairs of readout and dephase blocks; the
first pair is a rightward readout plus an upward shift in the phase
encoding direction; the second pair is a leftward readout plus the
upward shift. This group is repeated forty times. The final read-
out line (to complete the 81 k space line reading) is carried out
by the last Readout block (index number 8) which is not part
of the group. The final Dephase block is not mandatory, since
it simply returns the readout point to the k space origin.

Reps: 8 Reps: 10

Figure 4. Block hierarchy for an FSE sequence

Other sequences are possible and they give us room to illustrate
the block hierarchy that the GUI makes use of. Specifically, we
will give rise to a Fast Spin-Echo (FSE) with 10 echoes per shot.
The sequence has been built by two nested groups (see fig. 4).
The outer group, referred to as FSE, starts with an excitation
block generating the 90º RF pulse, followed by a Delay and
a Dephase that allows the pointer to be placed at the initial po-
sition –the lower left corner of K-space, for example–. We set the
number of repetitions of this group to 8, i.e., the sequence will
consist of eight shots. The inner group referred to as ETL con-
trols the readout positioning and the readout process itself; this
group consists of an Excitation block that generates the 180º
refocusing RF pulse followed by a –rightward– Readout block
and a Dephase to move the pointer to the next line. Its number
of repetitions —corresponding to the echo train length (ETL)—
will be set to 10, so that a total of 80 lines will be read at the end
of the simulation. The result is very similar to the one shown in
figure 1.
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5.2 3D Visualization

When clicking the View 3D Model button on the EX block
configuration menu, a new window emerges. This window
shows, simultaneously, the entire volume (on which the simula-
tion is to be performed) and a plane through it, which represents
the excited slice. Figure 5 shows the influence of the gradients
activated during the excitation period (in our case, gradients in y
and z).

Figure 5. 3D visualization of the excited slice and its correspond-
ing reconstruction

5.3 Web browser version

Figure 6 shows the browser version of the GUI. In this case, the
test was performed in Mozilla Firefox; other popular browsers
such as Chrome, Edge or Safari, have also been tested. As previ-
ously stated, graphical functionality so far has been implemented
with Julia packages. This is a limitation for a web-based ap-
plication since these packages are not currently supported by
WebAssembly. However, well-known graphical tools, such as
VTK [15] and, specifically, vtk.js (a rendering Javascript library
made for scientific visualization on the web), are off-the-shelf
material that can readily circumvent this problem.

Figure 6. Application running on a web browser

6 Conclusions and future work
This paper has presented a MRI sequence editor which, combined
with KomaMRI.jl simulator, allows the user to create any arbi-
trary sequence and to visualize its results. The tool is intended to
be cross-platform and simple to use. Its design and implementa-
tion (GUI-Julia interaction, client-server architecture operation,
3D visualization...) has also been described.

The GUI provides practitioners with easy access to KomaMRI.jl
that would otherwise require programming skills and profound
knowledge of the Julia language. Despite this language is similar
to other popular prototyping languages, such as Matlab and R, it
has some specificities (such as the a rigorous control of the vari-
ables types and its consequences in related operations, such as
operator overloading, to give an example) that makes the learn-
ing curve an issue. Hence, our GUI hides this complexity to the
user to that they can concentrate on their interests, whether edu-

cational or research-oriented. In addition, the aim is to offer this
tool as free software for the scientific community.

Despite in its current state the client-server version is in working
progress, we have provided clear technical steps on how this will
be accomplished and facilitating technologies —both in terms of
communications and visualization— have also been identified.
In addition, interfacing with OpenCL is also a short-term goal, so
that a parallelized multidevice version of KomaMRI.jl can also
be provided.
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